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Kinetic activation-relaxation technique: An off-lattice self-learning kinetic Monte Carlo algorithm
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Many materials science phenomena are dominated by activated diffusion processes and occur on time scales
that are well beyond the reach of standard molecular-dynamics simulations. Kinetic Monte Carlo (KMC)
schemes make it possible to overcome this limitation and achieve experimental time scales. However, most
KMC approaches proceed by discretizing the problem in space in order to identify, from the outset, a fixed set
of barriers that are used throughout the simulations, limiting the range of problems that can be addressed. Here,
we propose a flexible approach—the kinetic activation-relaxation technique (k-ART)—which lifts these con-
straints. Our method is based on an off-lattice, self-learning, on-the-fly identification and evaluation of activa-
tion barriers using ART and a topological description of events. Using this method, we demonstrate that elastic
deformations are determinant to the diffusion kinetics of vacancies in Si and are responsible for their trapping.
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Many problems in condensed matter and materials sci-
ence involve stochastic processes associated with the diffu-
sion of atoms over barriers that are high with respect to tem-
perature and therefore inherently slow under “normal”
conditions. Because the associated rates are small, these pro-
cesses may be considered independent; neglecting the ther-
mal motion of atoms, it is thus possible to deal with them
using the kinetic Monte Carlo (KMC) algorithm, a stochastic
approach proposed by Bortz et al.'"* and based on transition
state theory, whereby the evolution of a system is determined
by a set of prespecified diffusion mechanisms, i.e., whose
energy barriers are known beforehand. In KMC simulations,
the time scale is determined by the fastest activated pro-
cesses and, in practice, time scales of ms or longer can be
reached—much longer than accessible in traditional
molecular-dynamics (MD) simulations.

While KMC has been extensively and successfully used
over the past 20 years, it suffers from a number of draw-
backs. In particular, the systems investigated must be dis-
cretized and mapped onto a fixed lattice in order to define the
various diffusion mechanisms that need to be considered at a
given moment.? Once all processes on the lattice have been
identified (and their barriers evaluated) a priori, the simula-
tions simply consist in operating a diffusion event picked at
random, updating the list of possible moves in the new con-
figuration, and iterating this procedure long enough to cover
the relevant physical time scales. This approach works very
well for simple problems (e.g., surface diffusion, metal-on-
metal growth) but fails when the systems undergo significant
lattice deformations or when long-range elastic effects are
important. There have been numerous efforts to lift these
limitations, most solutions falling into one of two categories:
introduction of continuum approximations for the long-range
strain deformations, and on-the-fly evaluation of the energy
barriers. The first category retains the lattice formulation but
adds long-range contributions—which can be computed
through various extrapolation schemes—to the barriers.>%
With the second class of solutions, there is no need to set up
a catalog of all possible activation mechanisms. In a recently
proposed self-learning KMC approach, Trushin et al.” intro-
duced an on-the-fly search for barriers but displacements

1098-0121/2008/78(15)/153202(4)

153202-1

PACS number(s): 61.72.Cc, 05.10.Ln, 61.72.jd, 81.10.Aj

were restricted to be on-lattice. In other cases, a limited num-
ber of activated events using the activation-relaxation tech-
nique (ART)-like dimer® or eigenvector-following
methods'? are generated at each step in order to construct a
small catalog which serves to determine the next move.
Thus, these methods>™7 are still limited by the lattice descrip-
tion of the problem and the approximate character of the
elastic energies. On-the-fly/off-lattice approaches,®"'° on the
other hand, while more flexible, are currently inefficient as
they do not take advantage of the knowledge of previously
encountered events, and are therefore only useful for small
systems with very few barriers.

In this Brief Report, we introduce a powerful on-the-fly/
off-lattice KMC method which achieves speed-ups as large
as 4000 over standard MD for complex systems, while re-
taining a complete description of the relevant physics, in-
cluding long-range elastic interactions. Our approach is
based on the activation-relaxation technique (ART
nouveau)'!2 for generating events and calculating barriers;
the gain in efficiency is achieved through a topological clas-
sification of atomic environments, which allows configura-
tions and events to be recognized and stored efficiently, and
used again as the simulation proceeds, i.e., the method is
self-learning. We demonstrate the validity and efficiency of
this kinetic ART (k-ART) approach by applying it to the
problem of vacancy diffusion in crystalline silicon, demon-
strating the importance of elastic deformations for diffusion
and trapping.

Before describing k-ART, it is useful to discuss the topo-
logical characterization. For each configuration, a connectiv-
ity graph formed by the network of local neighbors is first
constructed. These may correspond to covalently bonded at-
oms in semiconductors, or faces in the Voronoi tessellation
of compact materials. It is important that the configuration be
uniquely defined through this network; i.e., the connectivity
graph must lead to a unique structure once relaxed with a
given interatomic potential. In order to classify the activated
processes, a truncated graph is constructed around each
atom, as illustrated in Fig. 1, the size of which depends on
the physics of the system under study. In the case of Si, for
example, we define the local environment around an atom by
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FIG. 1. (Color online) Local topology analysis in k-ART: A
truncated graph (b) is extracted from the complete lattice around the
highlighted central atom (a), and analyzed using NAUTY (c) which
returns a unique key associated with the given topology (d).

a sphere of radius 5.0 A, which includes about 40 atoms;
two neighbors are bonded if their distance is less than 2.8 A.
An event is defined as a change in the topology of the local
graph. This classification is performed using the freely avail-
able topological software NAUTY, developed by McKay,'?
which provides the topology index and all information nec-
essary for uniquely identifying each environment, including
the permutation key needed to reconstruct a specific geom-
etry from the generic topology and a set of reference posi-
tions.

Events which have been learned are stored for subsequent
use; in practice, the atomic positions of the initial state as
well as the associated topologies for the initial, transition,
and final truncated graphs are saved in memory. If needed,
the transition and final state configurations may be recon-
structed from the reference geometry through a series of
symmetry operations extracted from the topological analysis.
This results in a considerable reduction in the amount of data
that need to be generated and manipulated. For a single va-
cancy in c-Si, for example, only 20 different topologies are
necessary to describe all possible local environments, irre-
spective of the system size. Moreover, as the system evolves
and previously encountered topologies are recognized, it is
only necessary to update the table of active events, the cost
of which is negligible as we will see below.

We now turn to a detailed description of the k-ART algo-
rithm. Starting from an initial relaxed configuration, the vari-
ous local topologies are characterized with NAUTY and, for
each topology, possible events are constructed with ART
nouveau,'"!? which has been shown to efficiently identify
the relevant diffusion mechanism in a wide range of systems,
either crystalline or amorphous, with both empirical and ab
initio methods.'*~!7 Within this approach, the configuration is
slowly pushed along a randomly selected direction until an
unstable direction appears in the Hessian; this is followed
while minimizing the energy in the perpendicular hyperplane
until the system converges onto a saddle point and the sys-
tem is then pushed over the barrier and relaxed into a new
minimum. Since activated processes involve only a finite
number of atoms, each event is initiated by displacing a
given atom and its neighbors within a small, local region in a
random direction. The exact size of the displacement regions
depends on the system under study; in semiconductors, they
typically involve first and second nearest neighbors. The ini-
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tial convergence criterion for the saddle point search is set to
1.0 eV/A in order to accelerate convergence (but see be-
low).

To simplify labeling, each event is assigned to the topol-
ogy centered on the atom that moved the most during the
event, irrespective of the initial trial assignment. The events
are stored as displacement vectors from the reference state to
the transition and the final states; these are used to recon-
struct all specific events associated with a given topology
throughout the lattice. Once the list of topologies and asso-
ciated barriers is set (or has been updated), all low-energy
events (which we define for Si as having barriers of 15 kzT
or less) are reconstructed from the topology and re-relaxed
with a stricter convergence criterion of 0.1 eV/A in order to
accurately take into account the local environment and the
long-range interactions, leading to a precision of about 0.01
eV on the barrier height. At this point, two types of events
are in the catalog: (i) “generic” events, which include all
high-energy barriers, and (i) “specific” events, where all
low-energy barriers, dominating the kinetics, are relaxed in-
dividually. We associate a transition rate r;=7,exp(AE;/
kgT) to each event, where 7, is fixed at the outset and, for
simplicity, assumed to be the same (=10'3 s7!) for all events.
From this list, and following Bortz et al.,! the elapsed time to
the next event is computed as At=-In w/3;r;, with u as a
random number in the [0,1] interval. Finally, an event is
selected with a weight proportional to its rate and is oper-
ated; the clock is pushed forward and the process starts
again. The topology of all atoms belonging to the local en-
vironment around the new state is constructed. If a new to-
pology is found, a series of ART nouveau searches are
launched; otherwise, we proceed to the next step. After all
events are updated, the low-lying barriers are, once again,
relaxed before calculating the time increment and selecting
the next move.

As the system evolves, it may get trapped in a set of local
configurations separated by very low energy barriers that
dominate the dynamics without yielding diffusion. An exact
solution to dealing with such “flickers” has been proposed by
Athenes et al.,'® but we elect here to use a simpler limited-
memory Tabu-like approach!® which proceeds by banning
transitions rather than states.?” In brief, at any given moment,
we keep in memory (the “memory kernel”) the n previous
transitions. If a planned transition is already in memory, it is
blocked and the initial or the final configuration of this move
is adopted with the appropriate Boltzmann probability; the
transition is also blocked for the next n jumps and removed
from the list of possible events. As was shown in Ref. 20,
this approach is thermodynamically exact and is kinetically
valid as long as the memory is short compared to the time-
line of evolution of the system.

We now demonstrate the validity and efficiency of our
method by studying the diffusion of systems of two and six
vacancies in a 1000-atom Stillinger-Weber c¢-Si sample. For
the two-vacancy system, we start by removing two second-
neighbor Si atoms, then perform a k-ART run for 200 CPU
hours on a single 1.5 GHz Itanium 2 processor. During this
time, the vacancies perform about 1000 jumps, correspond-
ing to a diffusion time of about 100 ws. Figure 2(a) shows
the total squared displacement of the atoms as a function of
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FIG. 2. (a) Total squared displacement as function of KMC
steps (or time, in the inset). (b) Distance between the two vacancies
as a function of KMC steps.

KMC steps (i.e., events) and, in the inset, effective time. Two
types of behavior are clearly visible. During the first 400
steps (~4 ws), diffusion takes place through correlated
single vacancy hops over barriers of 0.20-0.24 eV, the two
vacancies maintaining a separation oscillating between 3.85
and 4.5 A. At about step 400, the two vacancies become
trapped as a single divacancy, characterized by small local
rearrangements, and remain so for about 80 us before par-
tially breaking apart by going through a 0.7 eV barrier, and
resuming its two-vacancy correlated walk. The correlated
motion is best seen in Fig. 2(b), where we plot the distance
between the two vacancies as a function of KMC steps: The
two vacancies remain bound in a first- or second-neighbor
state for the whole simulation, except for occasional excur-
sions to larger distances. This striking result illustrates per-
fectly the impact of elastic deformations on diffusion: While
an isolated vacancy diffuses with a barrier of 0.53 eV, the
elastic field caused by the presence of a second vacancy in its
vicinity lowers the barrier by about 0.3 eV, thus increasing
the diffusion rate by almost 3 orders of magnitude. On the
other hand, diffusion is strongly hindered when the two va-
cancies form a stable divacancy because of a dissociation
barrier of 0.7 eV.

For the six-vacancy problem, now, we start with a con-
figuration containing two three-vacancy clusters placed far
away from each other, as shown in the r=0 snapshot in Fig.
3. This configuration is challenging because the dynamics is
dominated by a series of local rearrangements and reorienta-
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FIG. 3. (Color online) Total squared displacement as function of
KMC steps for the six-vacancy system.

tions associated with low-energy barriers that preserve the
compactness of the cluster; i.e., breaking it apart is very dif-
ficult. To test this, we first ran a 30 ns MD simulation at 500
K; no dissociation or diffusion events were observed. Like-
wise, nothing happened in a 5000-step k-ART simulation
without a memory kernel, which covered 8 us. These two
calculations required roughly the same computational effort.
We thus already conclude that k-ART is at least 250 times
faster than MD; this is fast, but we can do much better by
invoking the memory kernel to eliminate the flicker problem
which is inherent to such complex materials.

Thus, we carried out a third simulation of the six-vacancy
problem using k-ART and the memory kernel. Figure 3
shows the squared displacement as a function of KMC steps.
We observe, in agreement with the previous two simulations,
that the initial state is fairly stable: The system flickers dur-
ing the first 20 us (160 KMC steps), in agreement with the
MD and the k-ART simulation without memory kernel. At
20 us, one vacancy breaks away from the top right cluster
and quickly moves to the other cluster, forming a four-
vacancy chain and leaving a divacancy behind. As in the
two-vacancy simulation, this divacancy splits and diffuses
through the box for about 45 us (525 KMC steps) as a cor-
related pair. Finally, at event 685 (65 ws), the divacancy
breaks apart and one vacancy rapidly joins the larger cluster.
The remaining lone monovacancy diffuses through the lattice
during 25 us and eventually joins the five-vacancy cluster,
forming a stable hexavacancy chain with a total energy 2 eV
lower than that of the initial configuration. During the fol-
lowing 150 KMC steps (20 us), the dynamics is dominated
by rearrangements and reorientations that do not cause the
dissociation of the stable hexavacancy cluster. In fact, the
system requires much more time to overcome the 0.7 eV
energy barrier needed to dissociate the hexavacancy than it
does to dissociate the divacancy since the elastic deforma-
tions affecting the lattice are much more important in the
former case than in the latter.

In terms of efficiency, k-ART with the memory kernel is
about 4000 times faster than MD, with 110 us simulated in
220 CPU hours. In k-ART most of the computational time is
spent in identifying events associated with new topologies.
This is clear in Fig. 4 where we plot CPU time versus simu-
lated time for k-ART, with the learning phases indicated by
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FIG. 4. (Color online) CPU time versus simulated time for the
hexavacancy aggregation problems. The red arrows indicate exten-
sive self-learning phases in k-ART.

arrows. Sampling is considerable: At the end of this run,
17 237 different events were generated, associated with 1964
initial topologies, for an average of almost 9 events per to-
pology; at each step during the simulation, the system pre-
sents about 80—120 different topologies. Since each atom is
associated with a topology, about 9000 different barriers are
considered at each KMC step. Because k-ART is inherently
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local, a number of improvements can be envisaged that will
yield considerable acceleration to the code. Parallelizing the
management of events and barriers, for example, should
speed up the calculations by a factor of 10 or 20. Moreover,
because of the topological classification, the catalog of
events may be stored and reused at a later time, thus accel-
erating new simulations.

Kinetic ART is an exciting self-learning, off-lattice kinetic
Monte-Carlo algorithm that opens the door to the numerical
study of problems such as semiconductor growth, self-
organization, defect diffusion, and interface mixing, which
have until now been out of the reach of simulations. While
the cost of k-ART is significantly higher than that of ordinary
lattice KMC, it has already provided essential information
regarding the importance of elastic deformations in control-
ling the kinetics of vacancy diffusion and trapping in Si.
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